

Microbial Detoxifications of Deoxynivalenol (DON) and their Potential Applications in Mitigating Mycotoxin Contaminations

Ting Zhou
Agriculture and Agri-Food Canada
Guelph Food Research Centre
Ting.Zhou@agr.gc.ca

NFHBF

St. Louis, MO

Dec 5, 2011

Deoxynivalenol by species of Fusarium

In 1980, the fungus Fusarium graminearum was found to be present in Soft White Winter Wheat in Canada and a mycotoxin, deoxynivalenol (DON) was identified

4-Deoxynivalenol (DON)
Vomitoxin

A type B Trichothecene

Mycotoxin contaminations

- According to FAO, global losses of foodstuffs due to mycotoxins are in the range of 1000 million tonnes per year; Fusarium Head Blight is a significant contributor http://www.fao.org/ag/agn/agns/chemicals_mycotoxins_en.asp

 Mycotoxin contamination can not be avoid in the current
- agricultural practices!
- > Innovative solutions are needed for both reducing mycotoxin production in the field and storage and utilizing already contaminated products

Microbial detoxification

- ➤ It is the detoxification of mycotoxins through biotransfomation by microorganisms
- ➤ Biotransformation is the *chemical conversion* of substances by living organisms or enzyme preparations
- ➤ The key for microbial detoxification is the mycotoxin detoxifying microorganisms

Biotransformation reactions and toxicity reductions

Structure of DON and targets for detoxification

Karlovsky, P. Appl Microbiol Biotechnol (2011) 91:491-504

Detoxification by de-epoxidation - DON to dE-DON

- ➤ The 12,13-epoxy ring in the trichothecene structure (e.g. DON) is an essential functional group for toxicity inhibition of protein biosynthesis; opening the ring, i.e. de-epoxidation, can result in less toxic product, dE-DON (DOM-1)
- ➤ The toxicity of dE-DON is 1/55 of DON determined by the concentration inhibiting 50% of the DNA synthesis (Eriksen *et al.* 2004)

Toxin	IC50 (mM)	IC50 relative to DON
DON	1.5 ± 0.34	1
De-epoxy DON	83.0 ± 8.77	55

Detoxification by acetylation - DON to 3ADON

- ➤ The number and position of the acetyl groups also greatly affect the toxicity of trichothecenes. Both acetylation and de-acetylation may reduce toxicity of trichothecenes
- ➤ The toxicity of 3ADON is 1/10 of DON determined by the concentration inhibiting 50% of the DNA synthesis (Eriksen *et al.* 2004)

Toxin	IC50 (mM)	IC50 relative to DON
DON	1.5 ± 0.34	1
3-AcDON	14.4± 1.59	10

Detoxification by oxidation - DON to 3-keto-DON

- The presence and the position of hydroxyl groups on the trichothecene molecules can also influence their toxicity (Betina, 1989).
- ➤ When the C-3 hydroxyl in DON was transformed to oxygen forming 3-keto-DON, the immunosuppressive toxicity of 3-keto-DON decreased remarkably (Shima et al., 1997).

Detoxification by epimerization - DON to 3-epi-DON

The epimerization has at least two steps in its pathway

LC-MS analysis of DON transformation by microbial isolate "Barpee"

Transformation of DON by "Barpee" under aerobic conditions

Detoxification by epimerization - DON to 3-epi-DON

The epimerization has at least two steps in its pathway

Karlovsky, P. Appl Microbiol Biotechnol (2011) 91:491–504

Toxicity of epi-DON - cytotoxicity

BrdU bioassay: measuring the incorporation of BrdU during DNA synthesis by a cell proliferation ELISA. The IC50 value of epi-DON was 1181 times as that of DON.

	BrdU bioassay using 3T3 fibroblast cells			
Compound	IC ₅₀	IC ₅₀ relativ	ve to DON	
	μg/mL (95% Confidence Interval)	Mass concentration	Molar concentration	
DON	0.238 (0.162, 0.349)			
epi-DON	281 (156, 505)	1181	1181	

MTT bioassay: assessing cell viability on the base of the capability of viable cells to convert soluble MTT (yellow) to purple formazan crystals. The IC50 value of epi-DON was 357 times as that of DON

	i		
Compound	IC ₅₀	IC ₅₀ relative to DON	
	μg/mL (95% Confidence Interval)	Mass concentration ¹	Molar concentration ²
DON	0.409 (0.324, 0.518)		
epi-DON	146 (100, 212)	357	357

He, J. and Zhou, T. Unpublished data

Source of mycotoxin detoxifying microbes - commonly occurring in nature

Occurrence /origin	Microorganisms	Transformations
Cow rumen fluid	Eubacterium BBSH 797; Rumen microorganisms	Deacetylation; Deepoxidation
Sheep rumen fluid	Butyrivibrio fibrisolvens, Lactobacillus sp. ; Rumen bacteria	Deacetylation
Chicken digesta	Gut microbes; <i>Bacillus</i> sp. LS100	Deacetylation; Deepoxidation
Rat	Intestinal microorganisms; Faecal microorganisms	Deacetylation; Deepoxidation
Pig	Gut microorganisms	Deepoxidation
Horse	Faecal microorganisms	Deepoxidation
Fish digesta	Intestinal microorganisms	Deacetylation; Deepoxidation
Enhanced soil	Agrobacterium-Rhizobium group strain E3-39; Citrobacter sp. ADS47; Bacterial strain Barpee	Deepoxidation; oxidation; epimerization
Soil	Curtobacterium sp. Strain 114-2	Deacetylation;
Soil /water	Bacterial communities	Deacetylation; Oxidation
Plant pathogen	Fusarium graminearum; F, nivale; F. solani; F. roseum	Acetylation; Deacetylation

Determination of microbial transformation

LC-UV-MS for bacterial DON de-epoxydation

Chicken gut microbes - De-epoxidation

Bacillus sp. LS100 + 9 other strains

➤ Bacterial isolates capable of transforming DON to dE-DON under anaerobic conditions have been identified from chicken digesta (Yu et al. 2010)

deoxynivalenol (DON)

deepoxy DON (dE-DON, DOM-1)

C133 - Fish gut microbes - De-epoxidation

C133

Microbial community and bacterial isolates capable of transforming DON to deepoxy DON under anaerobic and aerobic conditions have also been identified from fish digesta (Guan, S. et al. 2009).

Soil microbe - De-epoxidation

Citrobacter sp. ADS47
Deepoxidation under both aerobic and anerobic conditions

Size: 1.52 x 0.72 µm

Islam, R. et al. 2011

Unidentified bacterium from soil-Epimerization

Barpee

Bacterial identification by:

- Gas chromatographic analysis of fatty acids methyl esters (GC-FAME)
- Biolog bacterial identification
- 16S rRNA gene sequencing method
- Morphological characterization by scanning electron microscope (SEM) and transmission electron microscope (TEM)
 No matched species was found.

Efficiency of DON detoxifying microbes

Isolates	Efficiency (DON trai	nsformation µg / hour / 10 ⁶ cells)
LS100	8.30	(DON to dE-DON)
ADS47	0.12	(DON to dE-DON)
Barpee	1.39	(DON to 3-epi-DON)

LS100

Barpee

Nutrients (media) for detoxification

Detoxification of DON by bacterial strain Barpee

Glucose (GLU); Sucrose (SUC); Corn starch (STA); Corn steep liquor (CSL); Peptone (PEP); Yeast extract (YEA); Urea (URE); Ammonium sulphate (SUL); Ammonium nitrate (NIT); Corn meal broth (CMB)

Aerobic vs Anaerobic conditions for detoxification

Microbial Isolates	Detoxification	Aerobic	Anaerobic
Anaerofilum sp. LS72	Deepoxidation		V
Bacillus sp.LS100	Deepoxidation		\checkmark
Clostidiales SS-3	Deepoxidation		$\sqrt{}$
Coriobacterium sp. LS117	Deepoxidation		V
C133 (mixture from fish)	Deepoxidation	√	V
Citrobacter sp. ADS47	Deepoxidation	\checkmark	\checkmark
Barpee (Bacterial strain from soil)	Epimerization/ oxidation	\checkmark	

Citrobacter sp. ADS47

Temperature for DON detoxifying microbes

23

pH for DON detoxifying microbes

Barpee

Detoxifying multiple mycotoxins

Detoxification of type-A trichothecene mycotoxins by *Citrobacter* sp. ADS47

Detoxifying multiple mycotoxins

Detoxification of type-B trichothecene mycotoxins by *Citrobacter* sp. ADS47

3-Acetyldeoxynivalenol (3DON) (0%)

Applications of DON detoxifying microorganisms

Application of microbial detoxification in food chain

Expression of trichothecene-O-acetylase in plants

- Gene *Tri*101 encoding trichothecene-3-O-acetyltransferase from *F. graminearum* and *F. sporotrichioides* was cloned and the three-dimensional structures and kinetic properties of the enzyme have been studied in detail
- The gene has been expressed in several plant species and resulted in very limited success

Plant	Source of the gene	Results	Reference
Tobacco	F. sporotrichioides	Increased tolerance to trichothecenes	Muhitch et al. 2000
Wheat	F. sporotrichioides	Moderate tolerance to infection	Okubara et al. 2002
Arabidopsis	F. sporotrichioides	Resistance to the trichothecene diacetoxyscirpenol	Hohn et al. 2002
Rice	F. graminearum	Low expression, no tolerance to trichothecenes, infection not tested	Higa et al. 2003
Wheat	F. sporotrichioides	Field trial destroyed by opponents of GMO technology	Anonymous 2004
Barley	F. sporotrichioides	No effect on infection in field trial	Manoharan et al. 2006
Rice	F. graminearum	Increased tolerance to DON, tolerance to infection not tested	Ohsato et al. 2007

Expression of Tri101 gene in maize

(trichothecenes 3-o-actetyltrasferease – from Fusarium graminearum)

Figure 1. Diagram showing the plant expression vector PBI121 and PBI121-*Tri101*.

Figure 2. Maize multiple shoot clumps transformed with PBI121-Tri101 plasmid.

Regeneration medium

Pauls, P. and Zhou, T. Project report, 2010

Expression of *Tri101* **gene in maize**

(trichothecenes 3-o-actetyltrasferease – from Fusarium graminearum)

- All tests confirmed that maize transformation with the F. graminearum Tri101 gene was successful
- Effects on pathogen infection will be evaluated

T0 plants	Crossed with	PCR positive	southern positive	Western blot leaves	Western blot seeds
Tri101-1	CG65	+	+	+	+
Tri101-3	CG65	+	+	+	ND
Tri101-4	CG65	+	+	+	+
Tri101-5	CG65	+	+	+	ND
Tri101-8	CG65	+	+	+	+
Tri101-10	CG65	+	+	+	+

Expression of Tri101 gene in maize

(trichothecenes 3-o-actetyltrasferease – from Fusarium graminearum)

Protein extracts from the transgenic maize tissues, leaves and seeds, transformed DON to 3-ADON, ranged from 24- 44%. No transformation by the WT protein

	DON to 3 ADON Transformation (%)		
Protein extracts	Leaf	Seed	
Tri101-8-10	30.2	43.9	
Tri101-8-2	37.9	42.7	
Tri101-8-50	23.9	29.5	
WT	0.0	0.0	

Isolation of the bacterial mycotoxin detoxifying gene(s)

- Optimization of DON acetylases may improve the kinetic properties for the next generation of transgenic crops
- ➤ Genes encoding other DON detoxifying enzymes, particular for deepoxidations, should provide new opportunities for FHB resistance breeding and DON reduction
- Currently, we are actively working on identification of gene(s) responsible for DON deepoxidation.
- ➤ De-epoxidation results in greater toxicity reduction compared to acetylation, and the reaction is irreversible
- Method-1: Bacterial genomic DNA library preparation and functional screening of the library clones
- Method-2: Sequencing the whole-bacterial genome and identification of potential anti-toxin genes

ADS47 Genome Map developed by CGView software

Bacterial mycotoxins detoxification reactions

Identified unique genes of ADS47 to predict mycotoxins degrading genes

Unique gene classes	Number
Total unique genes	270
1. Reductases /oxidoreductases	9
2. Deacetylase	1
3. Dehydratase	1
4. Hydrolase	2
5. Transferase	4
6. Sulfatase	3
7. Bacteriocin	2
8. Type VI secretion	2
9. Kinase	4
10. Transporter	9
11. Membrane/exported protein	8
12. Regulator	12
13. Integrase/recombinase	5
14. Phage/prophage/transposae	27
15. Miscellaneous	34
16. Hypothetical protein	147

Application of microbial detoxification in food chain

Application in feed / livestock

Applied as probiotics

Feed

ingredients

Detoxification in Pig Trial

Pig starter III (corn and soy) as the base diet

	(3)	THE JA	A	March 6
Ingredient	A	В	С	D
Corn				
Fermented Corn				
Moldy Corn				
Fermented Moldy Corn				
DON	0	5 ppm	0	0
dE-DON (DOM-1)	0	0	equivalent 5 ppm	0

Detoxification of DON in Moldy Corn

- Single isolate LS-100 propagated in culture medium at 37°C in anaerobic chamber for 3 days to 109
- Moldy corn was autoclaved at 121°C for 15 min
- Inoculation of grounded moldy corn with LS-100 cell culture
- Incubation at 37°C, 72 h in anaerobic chamber (5%H₂ and 95% CO₂)
- Freeze dry the fermented moldy corn
- Analysis the product DON was transformed to DOM 100%

Li, X-Z, Zhu, C., de Lange, C.F.W., Zhou, T., He, J., Yu, H., Gong, J. and Young, J.C. (2011). Food Additives & Contaminants: Part A, 28:7, 894-901

Demonstration of microbial detoxification in pig trial

Dietary treatments ^a	Calculated ^b DON (mg kg ⁻¹)	Calculated DOM (mg kg ⁻¹)	Analysed DON (mg kg ⁻¹)	Analysed DOM (mg kg ⁻¹)
Non-toxic Corn	0	0	n.d.	n.d.
Toxic Corn	5.0	0	7.6 ± 1.1	n.d.
LS100-De-toxic Corn	0	5.0	n.d.	4.3 ± 3.1
LS100-Non-toxic Corn	0	0	n.d.	n.d.

Growth Performance of Starter Pigs

Toxin period (day 9 - 18)				
Adjusted Daily Weight Gain (g/d)	882 ^b	458 ^a	835 ^b	835 ^b
Adjusted Daily Feed Intake	1,337 ^b	943 ^a	1,367 ^b	1,347 ^b
Gain : Feed	0.66 ^b	0.47 ^a	0.62 ^b	0.61 ^{ab}

Pig Performance

➤ De-epoxidation by bacterial cells was able to eliminate the adverse effects of mycotoxin DON on swine performance

Microbial detoxification of other ingredients

- Contaminated wheat, barley
- ➤ By-products from grain processing e.g. Steep water, wheat bran
- By-products from Bioenergy industry

Acknowledgement

Agriculture and Agri-Food Canada

Dr. Joshua Gong
Honghui Zhu

Dr. J. Christopher Young

Jianwei He

Dr. Rong Cao Raymond Yang

Dr. Hai Yu Xiaojun Su

Dr. Xiu-Zhen Li Rafiqul Islam

Dr. Wenzhe Liu

Health Canada

Dr. Genevieve S. Bondy Dr. Peter Scott

University of Guelph

Prof. Cornelis (Kees) de Lange Prof. Peter Pauls

Cuilan (Julia) Zhu Juliana Guimarae

Ontario Ministry of Agriculture, Food and Rural Affairs

Wayne Du

University of Waterloo

Anne-Marie Hill Jennica Nichols

Research Funded by:

AAFC, Ontario Pork, OMAFRA, AAFC-BARD-NSERC

